
1 DA12 535 MINIM LNA SMOOHING FOR CAA C U) ILNO I 1/

UNI AT URBANA CORDINATED SCENC LAB H VPOOR MAY 81

C RANO S 0
UN A SION

7 ~ ~~F/G1/.N



r

A 5

( MCROOPY RESOLUTION TEST CHART

NATIONAL UREAU OF STANDARDS-1963-A

'Mob. - mj

+ k, .. .. . S"iS





SaCUNTV CLASIICATION OP THaI 0AQ4 (Win. Do* &Wee*

REPORT DOCUMENTATION PAGE ar.no CO,.,..G MI I. RPENU Me9R 1 GOVT ACCECION NO 3. ISCIPICAV.S CATALOG NUMeER

6. ItL (&ed sUe) 1. TYRI OP ePORT a 0EMcOo cOVERED

mINI4AX LINEAR SMOOTHING FOR CAPACITIES Technical Report

4. "f9[IoMgNG ORG. *1*O* MUMBen

R-909 ;UILU-ENG 81-2240
7. AU TOR(c) 8. C0NTPACT t 0 ANT MUMiE8a)

H. Vincent Poor N00014-81-K-0014;[ ECS 79-16453

9. PIERFORMIN ORGANIZATION MAI ANO LCOORS 10. PRORM£EI1 RJC.tS

Coordinated Science Laboratory, 1101 W. Springfield
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

It. CONTROLLING OFFICE MAMI AMC ACORSS 12. RENOMT OATE

Office of Naval Research may 1981
National Science Foundation 2. NumBER OF PAGES

12
iM MONITORING AGENCY MAI & AOOM6SOI0 dillemm ftor COwIIlled 01060.) IS. SECURITY CLASS 'e( th rPee)

L IS. CkASSIPICAflON10OWNGRAING

Ie. OISTResITON STATEMENT (of this Rkopor)

Approved for public release; distribution unlimited.

17. CISTRIBUTION STATMiNT (ot the .. oLsat entered In WIook 20, it dilerent rom Repeet)

[14. SUPftIMENTARtY MOTIS- [
[I$. KEY WOROS (Cawi.on avers. side Itnoooosemy and Ioelp by bleck Atmbe)

Minimax smoothing, Choquet capacities, random fields

20. ABSTRACT (C4ndsM/e a eev, WSe dU* U9neep 4Md i6ittlYh blea6k m1mbee)

Minimax linear smoothers are considered for the problem of estimating a homogeneous
signal field in an additive orthogonal noise field. A minimax game with the
qtadratic-mean estimation error as an objective"function is used to fotmulate this
problem. Uncertainty in signal and noise field spectra is modeled using general
nonparametric claises of measures proposed by Huber and Strassen for the problem of

minimax hypothesis testing. These classes, which are described in terms of Choquet
alternating capacities of order 2, include the conventional models for spectral
uncertainty and addit a general solution to the minimax linear smoothing problem.

0 N 14732O , ,,,,



FOEWR
~ [ This report in a preprint of a paper with the asa title which is to

appear in the Annals, of Probability. This work was presented in preliinary

form at the 18th IEEE Conference on Decision and Control, Ft. Lauderdale,

FL, December 12-14, 1979.

1.3
DIPi

ii~~jjrCe
val

bigt~ *861a



MINI4AX LINEAR SHOOEIRG FOR CAPACITIES

Ii by
H. Vincent Poor

Ii-

This work was supported in part by the National Science Foundation

Lunder Grant ECS 79-16453 and in part by the office of Naval Research
under Contract N00014-81-K-0014.

I
I
[ Reproduction in whole or in part is permitted for any purpose of

the Unites States Goverrment.

Approved for public release. Distribution unlimited.

I 
=27

I..-,I II_ I I i



1. Introduction. Suppose we observe the random field (Yz;z E a n) given

for each z E in by Yz = (Sz + Nz) where (Sz;z E R n  and [Nz; z E R n) Are

orthogonal random fields, each of which is second order, homogeneous, and

quadratic-mean continuous. Suppose further that h is a complex-valued Borel-

measurable function on Rn, and that S denotes that the linear estimate of

I Sz based on [Yz; z E Rn) which has transfer function h. Then the quadratic-

mean estimation error associated with S is given by

ZA
Ef 12& _ (2,T) -[J Il1_hI*dms + I I h[ 2duz] - e (h; MS.%) (1)

iwhere aS and MN are the spectral measures on (Rn 8) associated (via

Bochner's theorem [1, p. 245]) with (Sz; z E Rn] and (Nz; z E n],

respectively. For fixed mS and rN, the minium possible value of e(h;mS,mN)

j is achieved by the estimate with transfer function & = dmS/d(mS +mN) and

this minimum value is given by (2 Tr) nj h dMN.1 If, on the other hand,

mS and mN are known only to be in classes % and %, respectively, of

f. spectral measures on (Rln,8n), then a reasonable design strategy is to find

a linear estimate whose transfer function minimizes sup e(h;mS*N).

Such an estimate will be a minimax linear smoother for S and %. Certain

aspects of this problem have been considered by Kassam and Lim [2] and by

I- the author [3]. In this paper we consider the minimax linear smoothing

problem for the situation in which the measure classes 7S and 7% are of the

type generated by 2-alternating capacities as considered by Huber and

Strassen [4] in the context of minimax hypothesis testing. Examples of this

type of class include mixtures, Prohorov and Kolmogorov (variational)

neighborhoods, and other previously considered models for spectral uncertainty.

3 'Note that e(h;MS,mN) - (2rr)' hdnM + (2r)n" h-hI 2 d(m 5 mN).

I
A _' Jh-j d~a~mN 
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IHere we apply the results of Huber and Strassen to find the structure of
minimax linear smoothers for general models of this type.

2. The minimax smoother for capacity classes. In the following, Q denotes

a fixed subset of In , 0 denotes the Borel a-algebra on C), and 7 denotes

the class of all finite measures on ((),a). Recall that a finite set

function v on 47 is a 2-alternating capacity (see Choquet [5]) on (O4)

1, Lif it is increasing, continuous from below, continuous from above for closed

sets, and if it satisfies v(0) - 0 and v(A U B) + (A n B) e- v(A) + v(B)

I" for all A, B E 4. For a 2-alternating capacity v on (Qa) define the set

M vby

L 7l" [mE 741 m(A) - v(A) for all A E 4, and m( ) -v(0)]. (2)

A number of properties of classes of the form of (2) have been developed by

Huber and Strassen (4]. Note, for example, that is weakly compact and

that, if v is a measure, then M - (v).

[ For any pair (vo,vl) of 2-alternating capacities on (Q4) there exists

a Radon-Nikodym derivative dv1/dv0 , introduced in [4], which has the defining

property that, for each t E [0,.],

rt(tdv ldv0 > t) - inf rt(A) (3)

1 AEO

where rt(A) 0 (+t)'1[tVo(A) + v(AN. This derivative (which is a

family of functions having the defining property (3)) is the basis for the

3 minimax tests between capacity classes of the form of (2) as considered

in [4]. Further properties and a generalization of this derivative have been

I considered by Rieder (6]. In this context we state the following result

which is Theorem 4.1 of [4]:

LA



1 3

KLemma 2.1 (liuber-Strassen): Suppose v. and vN are 2-alternating capacities

and n0 is a version dvs/dv,. Then there exist measures E and

qN E 7N such that T0 E dqS/dqN and such that

[
qs(IT0 < t) - VS ((TT0 < t])

-qN((To > t) v( 0 .7 > t3)

for all t E [0,a].

Let X denote the class of all complex-valued --masurable functions on

.. Lemma 2.1 leads to the following theorem:

I Theorem 2.2: Suppose vS and vN are 2-alternating capacities on (Oa). Let

T 0 be a version of dv s/dv and choose (qs,qN) as in Lem, 2.1. Define

S0  Tr0 (I+ 0 ) 1 . Then [ho,(qspqN)] is a saddle-point solution to the game

mn sup e(h;mS ,mN)h X (m s , m ) E 77v X

where e is defined in (1), and thus h0 is a minimax linear smoother for

vand 7vN

V Proof: Noting that h0 E dqs/d(qs+qN), we have directly that

e(h0;qsqN) S e(h;qs,qN )

for all h EX. Thus, it is sufficient to show

e(ho;msmN) S e(ho;qSqN) (4)

N
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I4
I for all m%) E % x Iai. 2.1 aserts that is stochastically

smallest over under qS and is stochastically largest over under1IV 1_ +To-2 'ho1
Thus, since Il-hO12- (l+To) is decreasing in and -ho

12

I 2 (1 + )-2 is increasing i we have

j11 ho I2 dmsS h12 2dqS
[ and

aJiho12d% 
"c 10 ho 02dq4

for all (m~N E 77vSX %N. Equation (4) and hence Theorem 2.1 follow.

Note that, in view of Theorem 2.1, the pair (S,qN) singled out by

Lema 2.1 can be thought of a least-favorable pair of spectral measimes

for minimax linear smoothing. Concerning this pair of measures, we may

also state the following property:

Theorem 2.3: The pair (qsqN) E S X 74 N satisfies the conclusion of

Leua 2.1 if and only if its maximizes

in e(h;ms,) - (2 ,)-nj [dS/d(ms +N)] d
hEX

[ over all (Msm) E X L

SProof: Define f - d,,/d(N +%). Then

m in a (h~m, 1  (2r) _f fdins (2T)In (f f2 )d (mS*+1=N) .

Since C[xJ - (x-x ) is concave and twice continuously differentiable on

[0,11, Theorem 2.3 follows from Theorem 6.1 of [4].

<I



15
1 3. Discussion. Theorem 2.2 gives the general solution to the minimax

3 linear smoothing problem for signal and noise uncertainty classes of the

form of (2). Several useful examples of classes of this type are given by

I Huber and Strassen in [4], and other useful examples are given by Rieder

[6], Strassen [7], and Vastola and Poor (8]. Some of the most comonly

used examples of classes of the form 1 v can be written as e-neighborhoods

of some nominal measure p. Examples of capacity classes that have this

structure are contaminated mixtures, variational neighborhoods, and Prohorov

neighborhoods (see (4]). For this type of class, an uncertainty model will

consist of a nominal pair (uS$PN) of signal and noise spectral measures

V L. with respective degrees cS and cN of uncertainty placed on the nominal

" measures. The derivative between capacities generating classes of this

type is often of the form (see Huber [9, 101 and Rieder [6])

. ro(w)-maxfc', mintc", X C)YI, (u (5)

where X is the Radon-Nikodym derivative between the nominal pair of measures

(i.e.,X E d s /dl N) and c' and c" are nonnegative constiats with c' S c".

If I 0 of (5) is a version of dv /dV then Theorem 2.2 implies that a

" 7 ' minimax linear smoother for 74v and 7VN is given byfS N

where k' - c'/(l+c'), k" W C"/(l+c") and h' - X/(l+%). Note that h' is

the opti-mzm smoother for the nominal model, and thus the minimax linear

smoother for this case desensitizes the nominal smoother (to a degree depend-

ing on €S and eN) in those spectral regions where either p or JAN is

dominant (i.e., where h' is near 1 or is near 0).
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3 In the situations for which (5) is valid, (6) gives the traser

function of the miniasz linear smoother. Suppose, for exampe, that a - 1.,

I - [-bb] for saw b < a, c' < ell. and h' is symetric about w-0 and

5 is sgtrictly decreasing on [ObJ. Then the miuimax linear estimate of S5

determined by h 0 is given explicitly by

is f m o(z t)Ytdt

where h 0 i71(h0 ] is given by

fio(t) - i (t) + k' [sin(bt) - sin(a't)]f(rt) + k"hin(a"t)/(m~)

-L -r) [sin(b'r) - siLn(a'Er) +sin(allr)] (n1?r)1dr

[ with h' - ,11(hl) and with a' [rap., all] the positive solution to h'(a') -k'

[reap., h' (a"l) - l)

[ As a final cinmnt we note that, although we assmed initially that

the observation field was a continuous-parameter field, Theorem 2.2 and

1 2.3 are also directly applicable to the case in which the observation field

-3 is a discrete-parameter field (i.e., in which the time set is Zn) since

this latter situations corresponds to the particular case of the analysis

:3 of Section 2 In which C2

1 4. Acknowledasment. The author would like to thank K. S. Vastola for

several stimu.ating discussions concerning the techniques used In this paper.

I Also the helpful comaents and suggestions of the anonymous referee are

gratefully acknowledged.,

oil
~ .

1
A. *AN)",



7

I bRerences

5 [1] Wong, E. (1971). Stochastic Processes in Information and Dynamical

System. McGraw-Hill, New York.

1' [2] Kassam, S. A. and Lim, T. L. (1977). Robust Wiener filters. J.

Franklin Inst. 304 171-185.

[3] Poor, H. V. (1980). On robust Wiener filtering. IEEE Trans. Automatic

Control AC-25 521-526.

[] Huber, P. J. and Strassen, V. (1973). Minimax tests and the Neyman-

Pearson lemna for capacities. Ann. Statist. 1 251-263.

1 [5] Choquet, G. (1953/54). Theory of capacities. Amn. Inst. Fourier

5 131-292.

[6] Rieder, H. (1977). Least favorable pairs for special capacities.

Ann. Statist. 5 909-921.

[7] Strassen, V. (1965). The existence of probability measures with

I given marginals. Ann. Math. Statist. 36 423-439.

[8] Vastola, K. S. and Poor, H. V. (1980). On generalized band models

j in robust detection and filtering. Proc. 1980 Conf. on Inform.

I •Sciences and Systems, Princeton University, Princeton, NJ, March 1980,

1-5.

1 [9) Huber, P. J. (1965). A robust version of the probability ratio test.

Ann. Math. Statist. 36 1753-1758.

[10] Huber, P. J. (1968). Robust confidence limits. Z. Wahr. verw. Geb.

1O 269-278.

Coordinated Science Laboratory
I 1101 W. Springfield Ave.

University of Illinois
Urbana, Illinois 61801I



II

S I

I

!1
I

I
I

I

i i


